Absolutely! You can script the initial data tables and objects needed for ingesting data in Azure Synapse Analytics using both Python and Azure CLI. Here's a breakdown of each approach:
Python:
import pymssql
# Connect to Synapse SQL
connection = pymssql.connect(server="your_server_name", user="your_username", password="your_password")
cursor = connection.cursor()
# Create an external table for CSV data
cursor.execute("""
CREATE EXTERNAL TABLE my_data_table (
id INT,
name VARCHAR(100),
date DATE
)
WITH (
LOCATION = '/your/data/path/data.csv',
FILE_FORMAT = (TYPE = 'CSV', FIELD_QUOTE = '"', FIELD_DELIMITER = ',')
);
""")
# Create another external table for Parquet data
cursor.execute("""
CREATE EXTERNAL TABLE another_data_table (
id INT,
price DECIMAL(10, 2),
category VARCHAR(50)
)
WITH (
LOCATION = '/your/data/path/data.parquet',
FILE_FORMAT = (TYPE = 'PARQUET')
);
""")
# Commit changes and close connection
connection.commit()
cursor.close()
connection.close()
cursor.execute("""
CREATE VIEW filtered_data AS
SELECT * FROM my_data_table WHERE date > '2023-10-01';
""")
Azure CLI:
az synapse sql table create --name my_data_table --schema your_schema \
--file-format "CSV" --field-delimiter "," --field-quote "\"" \
--location "/your/data/path/data.csv"
az synapse sql table create --name another_data_table --schema your_schema \
--file-format "PARQUET" --location "/your/data/path/data.parquet"
az synapse sql view create --name filtered_data --schema your_schema \
--sql "SELECT * FROM my_data_table WHERE date > '2023-10-01';"
Choosing the right approach:
Remember, regardless of your chosen method, designing your initial data tables and objects efficiently is crucial for a smooth data ingestion process. Consider factors like data format, partitioning, and access permissions to ensure effective data management within your Synapse Analytics environment.